Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ray J. Butcher, ${ }^{\text {a }}$ Robin Evans ${ }^{\text {b }}$

 and R. Gilardi ${ }^{\text {b }}$ *${ }^{\text {a }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ${ }^{\mathbf{b}}$ Laboratory for the Structure of Matter, Naval Research Laboratory,
Washington, DC 20375, USA
Correspondence e-mail: gilardi@nrl.navy.mil

Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.108$
Data-to-parameter ratio $=11.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2,5,7-Trinitro-2,5,7,9-tetraazabicyclo[4.3.0]-nonan-8-one

The structure of the title compound, $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{7} \mathrm{O}_{7}$, contains fused five- and six-membered rings in a flattened envelope and a twist-boat conformation, respectively, with a cis junction between the two heterocyclic rings.

Comment

The title compound, 2,5,7-trinitro-2,5,7,9-tetraazabicyclo-[4.3.0]nonan-8-one, (I), is one of a family of compounds containing the tetraazabicyclo[4.3.0]nonane ring system synthesized by Pagoria et al. (1996) and Koppes et al. (1987) as possible precursors to energetic materials. The structures of some derivatives of this ring system have already been reported (Flippen-Anderson et al., 1990; George et al., 1992). In all cases, these molecules have similar conformations, in that the five-membered ring is a flattened envelope and the six-membered ring is in a twist-boat conformation. There is a cis junction between the two heterocyclic rings. Each of the rings contains both a planar and a slightly pyramidal N atom. The sum of the angles subtended at N2 and N7 are 352.3 and 351.2°, respectively. The geometrical parameters of the nitro groups are similar to those observed in related compounds (Flippen-Anderson et al., 1990; George et al., 1992; Gilardi, George \& Evans, 2002; Gilardi, Flippen-Anderson \& Evans, 2002).

(I)

The amine H atom takes part in a strong intermolecular hydrogen-bonding interaction with the keto O atom of an adjacent molecule. In addition, there are several weaker $\mathrm{C}-\mathrm{H}$ intermolecular hydrogen-bonding interactions with adjoining nitro O atoms. As is usual in compounds containing the nitro group, there are several short intermolecular $\mathrm{O} \cdots \mathrm{O}$ contacts, the shortest of which is 2.867 (2) \AA. A short intermolecular nitro-nitro $\mathrm{O} \cdots \mathrm{N}$ contact $[2.874$ (3) \AA] is also displayed. This is not all that uncommon in crystal structures containing the highly polar nitramine group. Shorter O $\cdots \mathrm{N}$ contacts of this type have been previously observed (Flippen-Anderson et al., 1990; Gilardi, Flippen-Anderson \& Evans, 2002) and occur in more than 20 other structures in Version 5.25 of the Cambridge Structural Database (CSD; April 2004 update; Allen, 2002). There is also a very short nitro-carbonyl O . C contact of 2.746 (3) \AA; this approach is approximately

Received 13 July 2004 Accepted 15 July 2004 Online 24 July 2004

Figure 1
A displacement ellipsoid plot of the title compound, with ellipsoids drawn at the 20% probability level.
perpendicular to the carbonyl plane. Only a few nitrocarbonyl contacts less than $2.8 \AA$ have been reported in the CSD. Excluding organometallic structures, there are six reports, the shortest contact being $2.76 \AA$ in the dipeptide ALA-ASN (Konopelski et al., 1999).

Experimental

A sample of the title compound was synthesized and crystallized by Clifford L. Coon of the Lawrence Livermore National Laboratory using methods described in Pagoria et al. (1996).

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{7} \mathrm{O}_{7}$
$M_{r}=277.18$
Monoclinic, $C 2 / c$
$a=23.607$ (3) А
$b=6.7381$ (8) \AA
$c=12.7583(16) \AA$
$\beta=110.215$ (2) ${ }^{\circ}$
$V=1904.4$ (4) \AA^{3}
$Z=8$
Data collection
Bruker SMART CCD
diffractometer
φ and ω scans
Absorption correction: by
integration (Wuensch \&
Prewitt, 1965)
$T_{\text {min }}=0.907, T_{\text {max }}=0.970$
6356 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.108$
$S=1.25$
1946 reflections
176 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.933 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \mathrm{\alpha}$ radiation
Cell parameters from 5019
reflections
$\theta=3.3-26.4^{\circ}$
$\mu=0.18 \mathrm{~mm}^{-1}$
$T=93(2) \mathrm{K}$
Thick plate, colorless
$0.56 \times 0.26 \times 0.14 \mathrm{~mm}$

1946 independent reflections
1751 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-29 \rightarrow 13$
$k=-8 \rightarrow 8$
$l=-15 \rightarrow 15$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0286 P)^{2}\right. \\
\quad+4.4051 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{gathered}
$$

Figure 2
A view down the b axis, showing the packing arrangement of the title compound and the intermolecular interactions (dashed lines).

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

O8-C8	1.193 (3)	N5-N5A	1.363 (3)
$\mathrm{O} 2 A-\mathrm{N} 2 A$	1.221 (3)	N5-C6	1.413 (3)
$\mathrm{O} 2 B-\mathrm{N} 2 A$	1.210 (3)	N5-C4	1.450 (3)
$\mathrm{O} 5 A-\mathrm{N} 5 A$	1.215 (3)	N7-N7A	1.362 (3)
O5B-N5A	1.212 (3)	N7-C8	1.427 (3)
$\mathrm{O} 7 A-\mathrm{N} 7 A$	1.213 (2)	N7-C6	1.472 (3)
$\mathrm{O} 7 B-\mathrm{N} 7 A$	1.197 (2)	N9-C8	1.330 (3)
N2-N2A	1.361 (3)	N9-C1	1.431 (3)
N2-C1	1.439 (3)	C1-C6	1.541 (3)
N2-C3	1.451 (3)	C3-C4	1.504 (3)
$\mathrm{N} 2 A-\mathrm{N} 2-\mathrm{C} 1$	117.02 (17)	$\mathrm{O} 7 B-\mathrm{N} 7 A-\mathrm{O} 7 A$	125.6 (2)
$\mathrm{N} 2 A-\mathrm{N} 2-\mathrm{C} 3$	118.40 (18)	$\mathrm{O} 7 B-\mathrm{N} 7 A-\mathrm{N} 7$	119.43 (18)
C1-N2-C3	116.92 (18)	$\mathrm{O} 7 A-\mathrm{N} 7 A-\mathrm{N} 7$	114.89 (18)
$\mathrm{O} 2 B-\mathrm{N} 2 A-\mathrm{O} 2 A$	124.93 (19)	C8-N9-C1	115.90 (19)
$\mathrm{O} 2 B-\mathrm{N} 2 A-\mathrm{N} 2$	118.43 (19)	N9-C1-N2	112.10 (18)
$\mathrm{O} 2 A-\mathrm{N} 2 A-\mathrm{N} 2$	116.58 (18)	N9-C1-C6	102.45 (17)
N5 A - $\mathrm{N} 5-\mathrm{C} 6$	118.80 (18)	N2-C1-C6	110.56 (17)
N5 A - $\mathrm{N} 5-\mathrm{C} 4$	117.18 (18)	N2-C3-C4	111.21 (18)
C6-N5-C4	123.48 (17)	N5-C4-C3	108.04 (18)
$\mathrm{O} 5 B-\mathrm{N} 5 A-\mathrm{O} 5 A$	125.97 (19)	N5-C6-N7	113.63 (18)
O5B-N5A-N5	118.51 (19)	N5-C6-C1	111.60 (18)
$\mathrm{O} 5 A-\mathrm{N} 5 A-\mathrm{N} 5$	115.50 (19)	N7-C6-C1	100.73 (16)
$\mathrm{N} 7 A-\mathrm{N} 7-\mathrm{C} 8$	122.16 (17)	O8-C8-N9	129.3 (2)
N7 A - $\mathrm{N} 7-\mathrm{C} 6$	117.86 (17)	O8-C8-N7	125.9 (2)
C8-N7-C6	111.15 (17)	N9-C8-N7	104.78 (18)

Table 2
Contact distances (\AA).

$\mathrm{O} 2 A \cdots \mathrm{~N} 5 A^{\mathrm{i}}$	$2.874(3)$	$\mathrm{O} 7 A \cdots \mathrm{C} 8^{\mathrm{ii}}$	$2.746(3)$
Symmetry codes: (i) $1-x,-y, 1-z ;$ (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.			

Table 3
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N9-H9 . . O8 ${ }^{\text {iii }}$	0.79 (3)	2.22 (3)	2.931 (3)	149 (3)
N9-H9...O5B ${ }^{\text {iv }}$	0.79 (3)	2.53 (3)	3.073 (3)	127 (3)
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} B^{\mathrm{v}}$	0.99	2.25	3.186 (3)	157
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{O} 2 B^{\text {vi }}$	0.99	2.52	3.234 (3)	129
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2 A$	1.00	2.22	2.642 (3)	103
C6-H6A \cdots O5B	1.00	2.21	2.648 (3)	105
C6-H6A \cdot O $7^{\text {vii }}$	1.00	2.43	3.305 (3)	146
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2 A^{\text {viii }}$	0.99	2.57	3.170 (3)	119

The H atom bonded to N 9 was refined freely with an isotropic displacement parameter. The $\mathrm{C}-\mathrm{H}$ distance for H atoms attached to tertiary C atoms was fixed at 1.00 A , while that for H atoms attached to methylene C atoms was fixed at $0.99 \AA$. In both cases, the geometries were optimized and the H atoms refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT; data reduction: SAINT (Sheldrick, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support from the Office of Naval Research, Mechanics Division. RJB acknowledges the ASEE/ONR program for a 2004 Summer Faculty Fellowship.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2001). SMART (Version 5.624) and SAINT (Version 6.04). Bruker AXS Inc., Madison, Wisconsin, USA.
Flippen-Anderson, J. L., George, C. \& Gilardi, R. (1990). Acta Cryst. C46, 1122-1125.
George, C., Gilardi, R. \& Flippen-Anderson, J. L. (1992). Acta Cryst. C48, 1527-1528.
Gilardi, R., Flippen-Anderson, J. L. \& Evans, R. (2002). Acta Cryst. E58, o972o974.
Gilardi, R., George, C. \& Evans, R. (2002). Acta Cryst. E58, o969-o971.
Konopelski, J. P., Wei, Y. \& Olmstead, M. M. (1999). J. Org. Chem. 64, 51485151.

Koppes, W. M., Chaykovsky, M., Adolph, H. G., Gilardi, R. \& George, C. (1987). J. Org. Chem. 52, 1113-1119.

Pagoria, P. F., Mitchell, A. R., Schmidt, R. D., Coon, C. L. \& Jessop, E. S. (1996). Am. Chem. Soc. Symp. Ser. 623, 151-164.

Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison Wisconsin, USA.
Sheldrick, G. M. (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison Wisconsin, USA.
Wuensch, B. \& Prewitt, C. (1965). Z. Kristallogr. 122, 24-59.

